# The symmetric functions catalog

An overview of symmetric functions and related topics

2021-05-26

## Plethysm

See [Hag07] and [LR10] for an introduction to calculations with plethysm. Another good reference is Mike Zabrocki's introduction to symmetric functions, Chapter III.

### Definition

Plethysm is closely related to to the power-sum symmetric functions. The following properties uniquely define pletysm where $f,$ $g$ and $h$ denote symmetric functions with integer coefficients. Brackets are commonly used to denote plethystic substitutions.

• $\powerSum_k[\powerSum_m] = \powerSum_{km}.$
• $\powerSum_k[f\pm g] = \powerSum_k[f] \pm \powerSum_k[g].$
• $\powerSum_k[f\cdot g] = \powerSum_k[f] \cdot \powerSum_k[g].$
• $(f\pm g)[h] = f[h] \pm g[h].$
• $(f\cdot g)[h] = f[h] \cdot g[h].$

Since every symmetric function can be expressed as a sum of products of $\powerSum_k(\xvec),$ these properties uniquely determine the expression $f[g].$

Example.

Let us compute $\powerSum_{22}[\powerSum_{43}].$ We have that

\begin{align*} \powerSum_{22}[\powerSum_{43}] &= (\powerSum_{2}[\powerSum_{43}])^2 \\ &= (\powerSum_{2}[\powerSum_{4}] \cdot \powerSum_{2}[\powerSum_{3}])^2 \\ &= (\powerSum_{8} \cdot \powerSum_{6})^2 \\ &= \powerSum_{8866}. \end{align*}

Similarly, $\powerSum_{32}[3\powerSum_{4}]$ can be computed as

\begin{align*} \powerSum_{32}[3\powerSum_{4}] &= (\powerSum_{3}[\powerSum_{4}+\powerSum_{4}+\powerSum_{4}])(\powerSum_{2}[\powerSum_{4}+\powerSum_{4}+\powerSum_{4}]) \\ &= (3\powerSum_{3}[\powerSum_{4}])(3\powerSum_{2}[\powerSum_{4}]) \\ &= 9\powerSum_{12} \cdot \powerSum_{8}. \end{align*}

Warning! The situation is a bit more involved if the coefficients of $f$ and $g$ in the pletysm $f[g]$ are formal power series in say $\setC(\qvec).$

We first define the plethysm $\powerSum_k[g].$ If $g = \sum_{\mu} d_\mu(\qvec) \powerSum_\mu$ then

$\powerSum_k[g] \coloneqq d_\mu(q_1^k,q_2^k,\dotsc) \sum_{\mu} \powerSum_{k\mu}.$

Let now $f = \sum_{\lambda} c_\lambda(\qvec) \powerSum_\lambda.$ Then

$f[g] \coloneqq \sum_{\lambda} c_\lambda(\qvec) \prod_{j=1}^{\length(\lambda)} \powerSum_{\lambda_j}[g].$

This definition agrees with the previous one in the case $f$ and $g$ are symmetric functions with integer coefficients, not depending on formal parameters.

Example.

We have that

$\powerSum_{k}[5q \powerSum_{m}] = 5q^k \powerSum_{km}.$

Capital letters are sometimes used to denote the sum of the variables in that alphabet. For example, $X = x_1+x_2+\dotsb = \elementaryE_1(\xvec).$

### Identities

We have the following identities:

• $\powerSum_{k}[qX] = q^k\powerSum_{k}[X]$
• $\powerSum_{k}[-X] = -\powerSum_{k}[X]$
• $\powerSum_{k}[\epsilon X] = \epsilon^k \powerSum_{k}[X]$ when $\epsilon=-1.$
• $\powerSum_{k}[X(1-q)] = (1-q^k)\powerSum_{k}[X]$
• $\powerSum_{k}[X/(1-q)] = \powerSum_{k}[X]/(1-q^k)$
• $\powerSum_{\lambda}[X+Y] = \powerSum_{\lambda}[X]+\powerSum_{\lambda}[Y]$
• $\powerSum_{\lambda}[XY] = \powerSum_{\lambda}[X]\powerSum_{k}[Y]$
• $\schurS_{\lambda}[X+Y] = \sum_{\mu \subseteq \lambda} \schurS_{\mu}[X]\schurS_{\lambda/\mu}[Y]$
• $\schurS_\nu[XY] = \sum_{\lambda,\mu} g_{\lambda\mu\nu} \schurS_\lambda(\xvec) \schurS_\lambda(\yvec)$ where $g_{\lambda\mu\nu}$ are the Kronecker coefficients.

I have not found a reference for the following useful relation but it is easy to prove. It is used in [AU20].

Let $f$ be a homogeneous symmetric function of degree $n.$ Then

$\powerSum_k[ \omega f ] = (-1)^{n(k+1)}\omega(\powerSum_k[ f ]).$

### Other identities

Proposition.

We have that

$\completeH_k[\completeH_2] = \sum_{\mu : \text{ even }} \schurS_{\mu}$

where the sum ranges over all partitions of $2k$ into even parts. This identity is due to Littlewood.

The SXP rule (see [Wil18] for a generalization), gives a formula for the plethysm,

$\schurS_\lambda[\powerSum_r] = \sum_{\nuvec} \sign_r(\nuvec^\ast) c^{\lambda}_{\nuvec} \schurS_{\nuvec^\ast}.$

Proposition (See [Appendix B, BN21]).

We have that for an indeterminate $c,$

$\schurS_\lambda\left[ \frac{\xvec}{1- c \xvec} \right] = \sum_{\rho} c^{|\rho|-|\lambda|} \det\left[ \binom{ \rho_j-j }{\mu_i-i} \right] \cdot \schurS_\rho(\xvec).$

The determinant of binomial coefficients have a combinatorial interpretation, see [GV85].

Moreover, it is shown in [Yel17] that the plethysm is in fact a specialization of the canonical stable Grothenieck polynomial:

$\grothendieckStable^{(c,-c)}_\lambda(\xvec) = \schurS_\lambda\left[ \frac{\xvec}{1- c \xvec} \right].$

## Open problems

### Schur plethysm

Let $\lambda \vdash n$ and $\mu \vdash m.$ Find a formula for the Schur plethysm coefficients in

$\schurS_\lambda[\schurS_\mu] = \sum_{\nu \vdash mn} p^{\nu}_{\lambda \mu} \schurS_{\nu}.$

This is a major open problem in the theory of symmetric functions and representation theory of classical groups.

Example.

We have that

$\schurS_{211}[\schurS_{11}] = \schurS_{3 3 2} + \schurS_{3 2 2 1} + \schurS_{4 2 1 1} + \schurS_{2 2 2 1 1} + \schurS_{3 2 1 1 1} + \schurS_{3 1 1 1 1 1}.$

### Foulkes conjecture

Foulkes conjecture [Fou50] states that $\completeH_b[\completeH_a]-\completeH_a[\completeH_b]$ is Schur-positive whenever $a \leq b.$ See the cycle index polynomial page for more information.