2024-02-22

## Jack P polynomials

The Jack polynomials are a family of symmetric functions which extends the Schur polynomials. They were introduced by H. Jack in [Jac70]. They are indexed by integer partitions and constitute a basis for the space of symmetric functions. For an overview, see [Mac95] and [Sta89].

The Jack polynomials can be generalized to the shifted Jack polynomials, Jack interpolation polynomials and Macdonald $P$ polynomials.

### Deformed Hall inner product

Let $\langle \cdot, \cdot \rangle_a$ be the inner product on symmetric functions such that $\langle \powerSum_\lambda, \powerSum_\mu \rangle_a = \delta_{\lambda\mu} a^{\length(\lambda)} z_\lambda.$ Then the family $\jackP_\lambda(x;a)$ is the unique family that satisfies:

- Orthogonality: $\langle \jackP_\lambda, \jackP_\mu \rangle_a = 0$ whenever $\lambda \neq \mu.$
- Triangularity: $\jackP_\lambda = \sum_{\mu \lt_d \lambda } c_{\lambda \mu} \monomial_\mu.$
- Normalization: $[\monomial_{1^n}]\jackP_\lambda = 1.$

These symmetric functions have coefficients which are rational functions in $a.$

### RSSYT formula

The Jack polynomial $\jackP_\mu(\xvec;a)$ in $n$ variables may be defined as

\[ \jackP_\mu(\xvec;a) = \sum_{T \in \textrm{RSSYT}(\mu)} \psi_T(a) \prod_{s \in \mu} x_{T(s)}, \]where the sum is taken over all reverse tableau with entries in $[n]$ and shape $\mu.$ Here, $\psi_T(a)$ is the rational function defined in [Mac95] as

\begin{equation*} \psi_T(a) = \prod_{i=1}^n \psi_{\rho^i/\rho^{i-1}}(a) \end{equation*}where $\rho^i/\rho^{i-1}$ defines the skew-shape in $T$ with content $i$ ($\rho^0 = \emptyset$) and

\begin{equation*} \psi_{\lambda/\mu}(a) = \prod_{s \in R_{\lambda/\mu} \setminus C_{\lambda/\mu} } \frac{ (a \cdot\arm_\lambda(s) + \leg_\lambda(s) + a)(a \cdot \arm_\mu(s) + \leg_\mu(s) + 1) }{ (a\cdot \arm_\lambda(s) + \leg_\lambda(s) + 1)(a \cdot\arm_\mu(s) + \leg_\mu(s) + a) }. \end{equation*}Here, $R_{\lambda/\mu}$ denotes the set of boxes in a row that intersects the shape $\lambda/\mu.$ The set of boxes $C_{\lambda/\mu}$ is defined in a similar manner for columns.

This formula generalizes to the super Jack polynomials, see [SV05].

**Example (Example of $\psi_{\lambda/\mu}(a)$ ).**

If $\lambda/\mu = (7,5,3,2)/(5,4,2,2),$ then the product for computing $\psi_{\lambda/\mu}(a)$ is taken over all boxes marked with a dot in

$\cdot$ | $\cdot$ | $\cdot$ | $\times$ | $\times$ | ||

$\cdot$ | $\cdot$ | $\cdot$ | $\times$ | |||

$\cdot$ | $\cdot$ | $\times$ | ||||

From this definition, it is evident that $\jackP_\mu(\xvec;1)$ is the Schur polynomial $\schurS_\mu(\xvec).$

### Recursive formula

There is an efficient recursion for computing the Kostka coefficients $K_{\lambda\mu}(\alpha),$ appearing in the expansion $\jackP_\lambda = \sum_{\mu} K_{\lambda\mu}(\alpha) \monomial_\lambda.$ This recursion be found in [p.327, Mac95] where he uses the notation $u_{\lambda\mu}$ for these coefficients. See also [LLM99Rob00], and [Prop. 2.16, DES07] where this formula appears. Generalizations to other root systems can be found in [DLM04b].

### Cauchy identity

The (dual) Cauchy identity for Jack $P$ polynomials states that

\[ \sum_{\lambda} \jackP_\lambda(x;a) \jackP_\lambda(y;1/a) = \prod_{i,j} (1+x_i y_j), \]see [Eq. (2.6), Mac92]. There is also a generalization of the Cauchy identity for the Jack J polynomials.

## Jack J polynomials

The integral form Jack polynomals are defined as the unique family satisfying the following relations:

- Orthogonality: $\langle \jackJ_\lambda, \jackJ_\mu \rangle_a = 0$ whenever $\lambda \neq \mu.$
- Triangularity: $\jackJ_\lambda = \sum_{\mu \lt_d \lambda } c_{\lambda \mu} \monomial_\mu.$
- Normalization: $[\monomial_{1^n}]\jackJ_\lambda = n!.$

These symmetric functions have coefficients in $\setN[a],$ see the combinatorial formula below.

It is convenient to introduce the following notation: Let $\lambda$ be a diagram, and $\square$ a box in $\lambda,$ and define the upper hook length and lower hook length as

\begin{align} h'_\lambda(\square) & \coloneqq (a \cdot \arm_\lambda(\square) + \leg_\lambda(\square) + a) \\ h_\lambda(\square) & \coloneqq (a \cdot \arm_\lambda(\square) + \leg_\lambda(\square) + 1). \end{align}These are denoted $h^*_\lambda(s)$ and $h_*^\lambda(s),$ respectively, in [Sta89].

Define the two $a$-deformations of the product of hook values in the diagram $\lambda$:

\[ H_\lambda = \prod_{\square \in \lambda} h_\lambda(\square), \quad H'_\lambda = \prod_{\square \in \lambda} h'_\lambda(\square). \]The relationship between $\jackJ_\lambda$ and $\jackP_\lambda$ is then given by $\jackJ_\lambda(x;a) = H_\lambda \jackP_\lambda(x;a).$ Furthermore, we have that

\[ \langle \jackJ_\lambda, \jackJ_\lambda \rangle_a = H_\lambda H'_\lambda \quad \text{and} \quad \langle \jackJ_\mu \jackJ_\nu, \jackJ_\lambda \rangle_a = H_\lambda H_\mu H_\nu \langle \jackP_\mu \jackP_\nu, \jackP_\lambda \rangle_a . \]**Example.**

For example,

\[ \jackJ_{31}(x;a) = (2a^2 + 4a + 2)\monomial_{31}+(6a + 10)\monomial_{211}+(4a + 4)\monomial_{22}+ 24\monomial_{1111}. \]### Specializations

We have that

\[ \jackP_\lambda(x;1) =\schurS_\lambda(x),\quad \jackP_{\lambda'}(x;0)=\elementaryE_{\lambda}(x) \text{ and } \jackP_{\lambda}(x;\infty) = \monomial_{\lambda}(x). \]Similarly,

\[ \jackJ_\lambda(x;1) = H_\lambda \schurS_\lambda(x), \quad \jackJ_{\lambda'}(x;0) = \lambda! \elementaryE_{\lambda}(x) \text{ and } \jackJ_{\lambda}(x;\infty) = n! \monomial_{\lambda}(x). \]We also have that $\jackJ_\lambda(\xvec;2) = \zonal_\lambda(\xvec),$ the Zonal symmetric functions.

### Cauchy identity

Recall that $H_\lambda H'_\lambda = \langle \jackJ_\lambda, \jackJ_\lambda \rangle_a.$ The Cauchy identity for Jack polynomials states that

\[ \sum_{\lambda} \frac{\jackJ_\lambda(x;a) \jackJ_\lambda(y;a)}{H_\lambda H'_\lambda} = \prod_{i,j} (1-x_i y_j)^{-1/a}. \]### Calogero–Sutherland and Laplace–Beltrami operators

The Jack polynomials $\jackJ_\lambda$ are eigenpolynomials for the Calogero–Sutherland operator

\[ \mathcal{H} \coloneqq \frac{\alpha}{2} \sum_{i=1}^n \left(x_i\frac{\partial}{\partial x_i}\right)^2 + \frac{1}{2} \sum_{i\lt j} \left( \frac{x_i+x_j}{ x_i - x_j } \right)\left( x_i \frac{\partial}{\partial x_i} - x_j \frac{\partial}{\partial x_j} \right), \]so that

\[ \mathcal{H} \jackJ_\lambda = \sum_{i=1}^n \left( \frac{\alpha}{2} \lambda_i^2 + \frac{n+1-2i}{2} \right) \jackJ_\lambda. \]See [Sut71] for the physics background of $\mathcal{H}.$

The are also eigenpolynomials for the (quasi) Laplace–Beltrami operator,

\[ \frac{\alpha}{2} \sum_{i=1}^n \left(x_i\frac{\partial}{\partial x_i}\right)^2 + \frac{1}{2} \sum_{i\neq j} \left( \frac{x_i^2}{ x_i - x_j } \right) \frac{\partial}{\partial x_i}. \]See [LLM99Rob00] for background.

### Knop–Sahi combinatorial formula

In [KS97], the following formula for the monomial expansion of the integral form Jack polynomials was found:

\[ \jackJ_\lambda (x;a) = \sum_{T \in \mathrm{NAF}(\lambda)} d_T(a) x^T \]where $\mathrm{NAF}(\lambda)$ is the set of non-attacking fillings of the diagram $\lambda.$ These are fillings of $\lambda$ with natural numbers such that for all boxes $(i,j),$ we have

- $T(i,j) \neq T(i',j)$ whenever $i \neq i',$
- $T(i,j) \neq T(i',j+1)$ whenever $i \gt i'.$

The quantity $d_T(a)$ is defined as

\[ d_T(a) = \prod_{s \in crit(T)} [a( \arm_\lambda(s) +1 ) + ( \leg_\lambda(s) +1 ) ] \]and $crit(T)$ is the set of boxes $(i,j)$ with $j>1$ such that $T(i,j) = T(i,j-1).$ The Knop–Sahi formula follows from the more general combinatorial formula for Macdonald polynomials in [HHL05].

In a recent paper [NSS21], the Knop–Sahi formula is generalized to the non-symmetric, interpolation setting.

### Pieri rule

R. Stanley provides a Pieri rule for Jack polynomials.

**Theorem (See [Thm. 6.1, Sta89]).**

Let $\mu \subseteq \lambda$ and let $\lambda/\mu$ be a horizontal $r$-strip. Then

\begin{equation*} \langle \jackJ_{(r)}\jackJ_{(\mu)}, \jackJ_\lambda \rangle = \left( \prod_{\square \in \mu} A_{\lambda \mu}(\square) \right) \left( \prod_{\square \in (r)} h_{(r)}(\square) \right) \left( \prod_{\square \in \lambda} B_{\lambda \mu}(\square) \right) \end{equation*}where

\begin{align} A_{\lambda \mu}(\square) &= \begin{cases} h'_\mu(\square) \text{ if $\lambda/\mu$ does does not intersect the column of $\square$} \\ h_\mu(\square) \text{ otherwise,} \\ \end{cases} \\ B_{\lambda \mu}(\square) &= \begin{cases} h_\lambda(\square) \text{ if $\lambda/\mu$ does does not intersect the column of $\square$} \\ h'_\lambda(\square) \text{ otherwise.} \\ \end{cases} \end{align}The middle product is simply $r!a^r.$

A dual Pieri rule, for computing $\langle \jackJ_{(1^r)}\jackJ_{(\mu)}, \jackJ_\lambda \rangle$ is given in [Thm. 6.1, KS96]. It is given for the Jack $P$ functions, and is stated as follows. Let $X(\lambda/\mu)$ be the set of boxes $(i,j)$ in $\mu,$ such that $\mu_i=\lambda_i$ and $\mu'_j \lt \lambda'_j.$ Then

\[ \langle \jackP_{(1^r)}\jackP_{(\mu)}, \jackP_\lambda \rangle = \prod_{\square \in X(\lambda/\mu)} \frac{ h'_\lambda(\square) h_\mu(\square)}{h_\lambda(\square) h'_\mu(\square)}. \]There is a nice symmetry for the Littlewood–Richardson coefficients, where conjugation of all three shapes correspond to swapping upper and lower hooks, see Eq. 2.3.1 in https://rucore.libraries.rutgers.edu/rutgers-lib/44186/PDF/1/play/.

### Jack in power-sum basis

In [HW17], a formula for $\jackJ_\lambda (x;a)$ in terms of power-sum symmetric functions is given. It is in general not cancellation free.

A formula for the Schur expansion is also given, but it is fairly complicated and not cancellation free in general.

### Jack Littlewood–Richardson coefficients

**Conjecture (See [Sta89]).**

R. Stanley conjecture that the coefficients $g^\lambda_{\mu\nu}(a) \coloneqq \langle \jackJ_\mu \jackJ_\nu, \jackJ_\lambda \rangle_a = H_\lambda H_\mu H_\nu \langle \jackP_\mu \jackP_\nu, \jackP_\lambda \rangle_a$ are polynomials in $a$ with non-negative integer coefficients.

Polynomiality of $g^\lambda_{\mu\nu}(a)$ has been proved [KS97], so only the non-negativity result remains open. The case when the indexing partitions has at most three parts is proved in [Naq], and another case involving rectangular shapes is considered in [CJ].

This conjecture has a generalization for shifted Jack polynomials.

**Lemma.**

Let us define the Jack Littlewood–Richardson coefficients $c^\lambda_{\mu\nu}(a)$ via

\[ \jackP_\mu \jackP_\nu = \sum_{\lambda} c^\lambda_{\mu\nu}(a) \jackP_\lambda. \]Then $g^\lambda_{\mu\nu}(a) = H'_\lambda H_\mu H_\nu c^\lambda_{\mu\nu}(a).$

**Proof.**

Since $\jackJ_\mu = H_\mu\jackJ_\mu,$ we have that

\begin{align} \frac{\jackJ_\mu}{H_\mu} \frac{\jackJ_\nu}{H_\nu} = \sum_{\lambda} c^\lambda_{\mu\nu}(a) \frac{\jackJ_\lambda}{H_\lambda} \end{align}and by rearranging the factors,

\[ \jackJ_\mu \jackJ_\nu = \sum_{\lambda} \frac{H_\mu \cdot H_\nu \cdot c^\lambda_{\mu\nu}(a)}{H_\lambda} \jackJ_\lambda. \]We now apply $\langle \cdot , \jackJ_\lambda \rangle_a$ on both sides and get

\[ \langle \jackJ_\mu \jackJ_\nu, \jackJ_\lambda \rangle_a = \frac{H_\mu \cdot H_\nu \cdot c^\lambda_{\mu\nu}(a)}{H_\lambda} \langle \jackJ_\lambda , \jackJ_\lambda \rangle_a. \]This implies that

\[ g^\lambda_{\mu\nu}(a) = H'_\lambda H_\mu H_\nu \cdot c^\lambda_{\mu\nu}(a) \]since $\langle \jackJ_\lambda , \jackJ_\lambda \rangle_a = H_\lambda H'_\lambda.$

For some recent progress on the Jack Littlewood–Richardson coefficients, see [Mic23].

### Skew Jack polynomials

There is no Knop–Sahi analog known for skew Jack polynomials, and there is no combinatorial formula for the monomial expansion of skew Jack polynomials (even though the coefficients are conjectured to be in $\setN[a]$). Some observations are proved in [BG21], and it is clear that this conjecture is very much related to the positivity of $g^\lambda_{\mu\nu}(a).$

### Hanlon's conjecture

**Conjecture (See [Han88]).**

Hanlon conjectured that there is some weight function $w(\sigma,\tau),$ such that

\begin{equation*} \jackJ_\lambda(x;a) = \sum_{\substack{\sigma \in RS(\lambda) \\ \tau \in CS(\lambda)}} \sign(\sigma) a^{w(\sigma,\tau)} \powerSum_{\text{type}(\sigma\tau)}(x) \end{equation*}where $RS(\lambda)$ and $CS(\lambda)$ is the row- and column-stabilizers of a fixed standard Young tableau of shape $\lambda.$

### Schur expansion conjecture

Expanding Jack polynomials in terms of Schur functions seem to have a strong connection with rook polynomials. This is explored in [AHW18]. We pose the following conjecture in that paper.

**Conjecture (Alexandersson–Haglund–Wang, 2018).**

Define the coefficients $b_{n-k}(\mu,\lambda)$ and $c_k(\mu,\lambda)$ via the expansions

\begin{equation*} \langle a^{|\lambda|}\jackJ_\mu(x;1/a) , \schurS_\lambda(x) \rangle = \sum_{k=0}^{n} c_k(\mu,\lambda) \binom{a+k}{n} = \sum_{k=0}^{n} b_{n-k}(\mu,\lambda) \binom{a}{k} k!. \end{equation*}Then $b_{n-k}(\mu,\lambda)$ and $c_k(\mu,\lambda)$ are non-negative integers. Moreover, the roots of the polynomials

\[ \sum_{k=0}^{n} b_k(\mu,\lambda) z^k \qquad \text{ and } \qquad \sum_{k=0}^{n} c_k(\mu,\lambda) z^k \]are all real.

This conjecture has a rich interplay with rook polynomials, and the relationship between the $c_k(\mu,\lambda)$ and $b_{n-k}(\mu,\lambda)$ are similar to that of rook hit polynomials and rook polynomials.

**Example (Table of coefficients).**

Consider the expansions

\[ a^{|\lambda|}\jackJ_\mu(x;1/a) = \sum_{k=0}^{n} c_k(\mu,\lambda) \binom{a+k}{n} = \sum_{k=0}^{n} b_{n-k}(\mu,\lambda) \binom{a}{k} k! \]and define the Jack rook polynomial $R_{\lambda,\mu}(t)$ and the Jack hit polynomial $R_{\lambda,\mu}(t)$ as

\[ R_{\lambda,\mu}(t) = \sum_{k=0}^{n} b_k(\mu,\lambda) z^k \qquad H_{\lambda,\mu}(t) = \sum_{k=0}^{n} c_k(\mu,\lambda) z^k, \]respectively. For small $(\lambda,\mu)$ we get the following table. Missing combinations of $\lambda$ and $\mu$ means that the corresponding polynomial vanish.

$\mu$ | $\lambda$ | $\textbf{Rook}$ | $\textbf{Hit}$ | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

$1$ | $1$ | $1$ | $1$ | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

$2$ | $2$ | $2 z+1$ | $2 z$ | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

$2$ | $11$ | $1$ | $2$ | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

$11$ | $11$ | $2 z+2$ | $2 z+2$ | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

$3$ | $3$ | $6 z^2+6 z+1$ | $6 z^2$ | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

$3$ | $21$ | $6 z+2$ | $12 z$ | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

$3$ | $111$ | $1$ | $6$ | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

$21$ | $21$ | $3 z^2+7 z+2$ | $3 z^2+8 z+1$ | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

$21$ | $111$ | $4 z+2$ | $8 z+4$ | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

$111$ | $111$ | $6 z^2+18 z+6$ | $6 z^2+24 z+6$ | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

$4$ | $4$ | $24 z^3+36 z^2+12 z+1$ | $24 z^3$ | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

$4$ | $31$ | $36 z^2+24 z+3$ | $72 z^2$ | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

$4$ | $22$ | $12 z^2+12 z+2$ | $24 z^2+24 z$ | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

$4$ | $211$ | $12 z+3$ | $72 z$ | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

$4$ | $1111$ | $1$ | $24$ | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

$31$ | $31$ | $8 z^3+28 z^2+16 z+2$ | $8 z^3+32 z^2+8 z$ | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

$31$ | $22$ | $12 z^2+12 z+2$ | $24 z^2+24 z$ | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

$31$ | $211$ | $20 z^2+22 z+4$ | $40 z^2+52 z+4$ | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

$31$ | $1111$ | $6 z+2$ | $36 z+12$ | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

$22$ | $22$ | $12 z^3+48 z^2+30 z+4$ | $12 z^3+60 z^2+24 z$ | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

$22$ | $211$ | $20 z^2+22 z+4$ | $40 z^2+52 z+4$ | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

$22$ | $1111$ | $12 z^2+18 z+4$ | $24 z^2+60 z+12$ | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

$211$ | $211$ | $8 z^3+48 z^2+38 z+6$ | $8 z^3+72 z^2+60 z+4$ | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

$211$ | $1111$ | $24 z^2+30 z+6$ | $48 z^2+84 z+12$ | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

$1111$ | $1111$ | $24 z^3+168 z^2+144 z+24$ | $24 z^3+264 z^2+264 z+24$ | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Data for partitions of sizes $1,2,\dotsc,9$ is available from jack-rook-hit-data.txt (106 KiB).

We conjecture that each polynomial above is real-rooted. One can show that if the Jack hit polynomials are real-rooted, then so are the Jack rook polynomials.

### Gessel expansion conjecture

**Conjecture (See [AHW18]).**

We conjecture that there is a statistic $\sigma,$ such that

\begin{equation*} a^{|\lambda|}\jackJ_\lambda(x;1/a) = \sum_{\pi,\tau \in \symS_n} \binom{a+n-1-\des(\pi)}{n} \gessel_{\sigma(\mu,\pi,\tau)}(x). \end{equation*}## Jack characters

The Jack characters are certain normalizations of the coefficients when Jack polynomials are expanded in the power-sum basis.

Let $\lambda \vdash n$ and $\mu \vdash m.$ Then the Jack character (introduced in [Las08aLas09]) is defined as

\[ \theta_{\mu}^{(\alpha)}(\lambda) \coloneqq \begin{cases} \binom{n- m + m_1(\mu)}{m_1(\mu)} \powerSum_{\mu,1^{n-m}} & \text{if } n\lt m \\ 0 & \text{if } n\lt m \end{cases} \]where $m_1(\mu)$ denotes the number of parts equal to $1$ in $\mu.$

Lasalle conjectured that $\theta_{\mu}^{(\alpha)}(\lambda)$ satisfy a certain positivity property [Las08a]. This was recently proved by H.B. Dali and M. Dołęga [DD23]. We shall need some more definitions and background in order to state their result.

Let $\lambda = [s_1^{r_1}, s_2^{r_2}, s_k^{r_k}]$ be the multi-rectangular coordinates for $\lambda,$ where $s_1 \geq s_2 \geq \dotsb \geq s_k.$ That is, $\lambda$ consists of $k$ rectangles of size $s_i \times r_i$ stacked on top of each other. It was then proved that $\theta_{\mu}^{(\alpha)}(\mathbf{r},\mathbf{s})$ is a polynomial in $\setQ[\alpha,s_1,\dotsc,s_k,r_1,\dotsc,r_k].$ Stanley conjectured a combinatorial formula in the case $\alpha=1$ [Sta03], and this was later proved by V. Féray [Fér10].

**Theorem (H.B. Dali and M. Dołęga [DD23]).**

The polynomial $(-1)^{|\mu|}z_\mu \theta_{\mu}^{(\alpha)}(\mathbf{r},\mathbf{s})$ is a polynomial in the variables $\beta\coloneqq \alpha-1,$ $-s_1,\dotsc,-s_k,$ $r_1,\dotsc,r_k$ with non-negative integer coefficients.

H.B. Dali and M. Dołęga also give a combinatorial formula for $(-1)^{|\mu|}\theta_{\mu}^{(\alpha)}(\lambda)$ in terms of layered, non-oriented maps.

## References

- [AHW18] Per Alexandersson, James Haglund and George Wang. On the Schur expansion of Jack polynomials. 30th International Conference on Formal Power Series and Algebraic Combinatorics. Séminaire Lotharingien de Combinatoire, 80B(90) 2018. 12 pages
- [BG21] Paolo Bravi and Jacopo Gandini. Some combinatorial properties of skew Jack symmetric functions. arXiv e-prints, 2021.
- [CJ] Tommy Wuxing Cai and Naihuan Jing. Jack vertex operators and realization of Jack functions. Journal of Algebraic Combinatorics, 39(1):53–74, March .
- [DD23] Houcine Ben Dali and Maciej Dołęga. Positive formula for Jack polynomials, Jack characters and proof of Lassalle's conjecture. arXiv e-prints, 2023.
- [DES07] Ioana Dumitriu, Alan Edelman and Gene Shuman. MOPS: multivariate orthogonal polynomials (symbolically). Journal of Symbolic Computation, 42(6):587–620, June 2007.
- [DLM04b] J. F. van Diejen, L. Lapointe and J. Morse. Determinantal construction of orthogonal polynomials associated with root systems. Compositio Mathematica, 140(02):255–273, March 2004.
- [Fér10] Valentin Féray. Stanley's formula for characters of the symmetric group. Annals of Combinatorics, 13(4):453–461, January 2010.
- [Han88] Phil Hanlon. Jack symmetric functions and some combinatorial properties of Young symmetrizers. Journal of Combinatorial Theory, Series A, 47(1):37–70, January 1988.
- [HHL05] James Haglund, Mark D. Haiman and Nicholas A. Loehr. A combinatorial formula for Macdonald polynomials. J. Amer. Math. Soc., 18(03):735–762, July 2005.
- [HW17] James Haglund and Andrew T. Wilson. Macdonald polynomials and chromatic quasisymmetric functions. arXiv e-prints, 2017.
- [Jac70] Henry Jack. A class of symmetric polynomials with a parameter. Proc. Roy. Soc. Edinburgh Sect. A, 69:1–18, 1970/1971.
- [KS96] Friedrich Knop and Siddhartha Sahi. Difference equations and symmetric polynomials defined by their zeros. International Mathematics Research Notices, 1996(10):473, 1996.
- [KS97] Friedrich Knop and Siddhartha Sahi. A recursion and a combinatorial formula for Jack polynomials. Inventiones Mathematicae, 128(1):9–22, March 1997.
- [Las08a] Michel Lassalle. A positivity conjecture for Jack polynomials. Mathematical Research Letters, 15(4):661–681, 2008.
- [Las08a] Michel Lassalle. A positivity conjecture for Jack polynomials. Mathematical Research Letters, 15(4):661–681, 2008.
- [Las09] Michel Lassalle. Jack polynomials and free cumulants. Advances in Mathematics, 222(6):2227–2269, December 2009.
- [LLM99] Luc Lapointe, A. Lascoux and J. Morse. Determinantal expression and recursion for Jack polynomials. The Electronic Journal of Combinatorics, 7(1), November 1999.
- [Mac92] Ian G. Macdonald. Schur functions: Theme and variations. Séminaire Lotharingien de Combinatoire [electronic only], 28:5–39, 1992.
- [Mac95] Ian G. Macdonald. Symmetric functions and Hall polynomials. Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Second edition, 1995. With contributions by A. Zelevinsky, Oxford Science Publications
- [Mic23] Ryan Mickler. Jack Littlewood–Richardson coefficients and the Nazarov–Sklyanin Lax operator. arXiv e-prints, 2023.
- [Naq] Yusra Naqvi. A product formula for certain Littlewood–Richardson coefficients for Jack and Macdonald polynomials. Journal of Algebraic Combinatorics, 44(3):603–643, April .
- [NSS21] Yusra Naqvi, Siddhartha Sahi and Emily Sergel. Interpolation polynomials, bar monomials, and their positivity. arXiv e-prints, 2021.
- [Rob00] Leigh Roberts. A unified view of determinantal expansions for Jack polynomials. The Electronic Journal of Combinatorics, 8(1), December 2000.
- [Sta03] Richard P. Stanley. Irreducible symmetric group characters of rectangular shape. Séminaire Lotharingien de Combinatoire, 50:1–11, 2003.
- [Sta89] Richard P. Stanley. Some combinatorial properties of Jack symmetric functions. Advances in Mathematics, 77(1):76–115, September 1989.
- [Sut71] Bill Sutherland. Quantum many-body problem in one dimension: ground state. Journal of Mathematical Physics, 12(2):246–250, February 1971.
- [SV05] A.N. Sergeev and A.P. Veselov. Generalised discriminants, deformed Calogero–Moser–Sutherland operators and super-Jack polynomials. Advances in Mathematics, 192(2):341–375, April 2005.